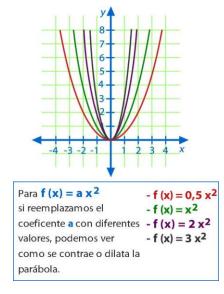


Nombre: _____ Curso:2º ____ Fecha: _____

Variación de los coeficientes a,b y c en la función $f(x) = ax^2 + bx + c$ Efecto en el gráfico de la Parábola


Partiremos con la función elemental o unitaria $y = x^2$ con a = 1; b = 0 y c = 0. La parábola correspondiente a esta función tiene su vértice coincidente con el origen (0,0), y su eje de simetría con el eje de las ordenadas (y).

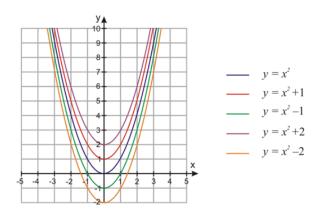
Veamos, entonces, estas posibles variaciones.

Caso 1

Al darle valores reales distintos de cero al coeficiente a de x^2 , las "ramas" de la parábola asociadas a la función, se vuelven más cerradas o abiertas con respecto a la parábola unitaria

Si $\,$ **a>1** la parábola se contrae, es decir las ramas de la parábola se acercan a eje y

Si **0<a<1** la parábola se dilata, es decir, las ramas de la parábola se alejan del eje y

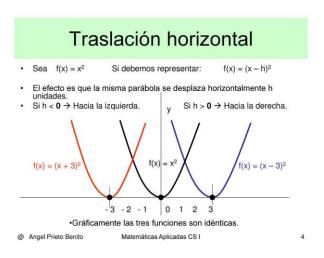

Caso 2: (Traslación Vertical)

Sumar a la variable x^2 de la función constante positiva o negativa k, la parábola se traslada k unidades hacia arriba o hacia abajo del origen (0,0), respectivamente.

Tenemos:

$$y = x^2 + \mathbf{k}$$

Ejemplo


Caso 3: (Traslación Horizontal)

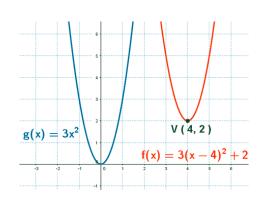
Al remplazar en la función la variable independiente x por (x-h), siendo h una constante positiva o negativa, la parábola se traslada h unidades hacia la derecha o hacia la izquierda del origen (0,0), respectivamente.

Tenemos:

$$y = (x - h)^2$$

Ejemplo

Caso 4:

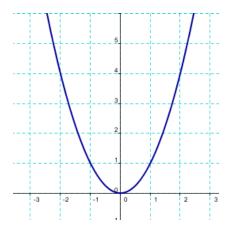

Al remplazar simultáneamente en la función la variable independiente x por (x-h), siendo h una constante, multiplicar esta por $a \neq 0$ y finalmente sumarle una constante k, la parábola se modifica simultáneamente en estos tres aspectos:

- Sus ramas se abren o se cierran.
- Se desplaza hacia arriba o hacia abajo con respecto al origen.
- Se desplaza a la izquierda o la derecha del eje Y

$$y = a(x - h)^2 + k$$

El vértice de la parábola es el punto (h,k)

Ejemplo



El vértice de la parábola asociada a la función $f(x) = 3(x-4)^2 + 2$ es (4,2)

El vértice de la parábola asociada a la función $g(x) = 3x^2$ es (0,0)

Ejercicios:

1) Dada la parábola elemental o unitaria $f(x) = x^2$

En un mismo gráfico realiza las siguientes traslaciones:

a)
$$g(x) = x^2 + 5$$

b)
$$h(x) = x^2 - 3$$

c)
$$i(x) = (x-4)^2$$

d)
$$j(x) = (x+6)^2$$

e)
$$e(x) = (x-1)^2 + 7$$

f)
$$l(x) = (x+8)^2 - 2$$

- 2) Determina el vértice de cada parábola del ejercicio 1
- 3) Dada la parábola elemental o unitaria $f(x)=x^2$, escribe una función para cada caso.
 - a) Se traslada 12 unidades a la izquierda.
 - b) Se traslada 20 unidades a la derecha
 - c) Se traslada 15 unidades hacia arriba
 - d) Se traslada 4 unidades hacia abajo
 - e) Se traslada 1 unidad a la izquierda y 7 hacia arriba
 - f) Se traslada 6 unidades a la derecha y 9 hacia abajo